10z^2+5z=0

Simple and best practice solution for 10z^2+5z=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10z^2+5z=0 equation:



10z^2+5z=0
a = 10; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·10·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*10}=\frac{-10}{20} =-1/2 $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*10}=\frac{0}{20} =0 $

See similar equations:

| -7*m=-56 | | -13m=-377 | | -12*d=-48 | | 2t^2-1=0 | | 0.667n+4=10 | | 3x+94=97 | | -21+g=-12 | | 7/8-5x=x-1/3 | | 2t^2=1 | | 3.14×2x²=A | | 2x+17+123=180 | | 2x+17+23=180 | | -4m-3=5-3m+6-19 | | 43+4x-16+109=180 | | (7x+9)(4x+4)+57=180 | | (x−9)(x−5)=0 | | 75+(7x+14)+49=180 | | Y+4y+29=0 | | 49+(7x+14)+75=180 | | Y-4x=58 | | 4m^2-8+9=0 | | 3x+7+2x+3=100 | | 20+1/8z=27 | | 2x+1*4x+8=10 | | 2x+1x4x+8=10 | | -6=1+b | | 3x+7+2x+3=10 | | 9x+2=13/ | | 4(x+3)-3x=47 | | X-2=(3x+4)^1/2 | | X-2=(4x+4)^2/2 | | M^2-6m=12 |

Equations solver categories